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Abstract
It is well known that, in bulk, the solution of the Bogoliubov–de Gennes equations is the same
whether or not the Hartree–Fock term is included. Here the Hartree–Fock potential is position
independent and so gives the same contribution to both the single-electron energies and the
Fermi level (the chemical potential). Thus, the single-electron energies measured from the
Fermi level (they control the solution) stay the same. This is not the case for nanostructured
superconductors, where quantum confinement breaks the translational symmetry and results in
a position-dependent Hartree–Fock potential. In this case its contribution to the single-electron
energies depends on the relevant quantum numbers. We numerically solved the Bogoliubov–de
Gennes equations with the Hartree–Fock term for a clean superconducting nanocylinder and
found a shift of the curve representing the thickness-dependent oscillations of the critical
superconducting temperature to larger diameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Advances in nanofabrication technology resulted recently
in high-quality metallic superconducting ultrathin nanofilms
[1–4] and nanowires [5–8]. In most samples the electron
mean free path was estimated to be about or larger than
the nanofilm/nanowire thickness [2, 5, 8]. In this case
the effects of the transverse quantization are not shadowed
by impurity scattering and, hence, the conduction band
splits up into a series of single-electron subbands resulting
from the quantized transverse modes. This will have a
pronounced effect on the superconducting properties (see,
for instance [9, 10], and references therein). Notice that
high-quality nanofilms do not exhibit significant indications
of defect- or phase-driven suppression of superconductivity
(see discussion in [2]). For high-quality nanowires the
phase-fluctuation effects were shown to seriously influence
the superconducting state only in narrowest aluminum
specimens with width ≈ 5–8 nm [5, 8, 11]. Thus, the
transverse quantum confinement is the major mechanism
governing the superconducting properties in this case.
Therefore, it is timely to study in a more detail clean

nanosized superconductors in the presence of quantum
confinement.

Quantum confinement breaks the translational symmetry
and, so, the superconducting order parameter becomes
position dependent. The well-known BCS ansatz for
the ground state wavefunction is not applicable in this
case, and the Bogoliubov–de Gennes (BdG) equations are
a relevant tool to investigate equilibrium superconducting
properties. Recent numerical studies of the BdG equations
for nanofilms [9] and nanowires [10, 12, 13] show that the
transverse quantum confinement has a substantial impact on
the superconducting solution. However, the BdG equations
investigated in [9, 10, 12, 13], were solved without the
Hartree–Fock (HF) potential. The reason is that in bulk, the
superconducting solution is not sensitive to the HF term in the
BdG equations [14] and, so, the common expectation is that a
similar conclusion holds for the broken translational symmetry.
However, there is no detailed investigations on this subject and,
so, such a study is needed.

In the bulk BdG equations, the HF potential is not spatially
dependent and, so, it produces the same contribution to all
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single-electron energies, with no dependence on the relevant
quantum numbers. Hence, the Fermi level (the chemical
potential) acquires the same contribution, as well, and the
single-electron energies measured from the Fermi level are
not changed. It is well known that the BdG equations are
derived within the grand canonical formalism and, so, the
electron energies appearing in the basic expressions absorb the
chemical potential. As a result, the superconducting solution is
insensitive to the HF potential. The situation is different in the
presence of quantum confinement. The translational symmetry
is now broken, the HF mean field is position dependent, and,
so, its contribution to the single-electron energies depends
on the relevant quantum numbers. Furthermore, the single-
electron wavefunctions themselves are influenced by the
presence of the HF field, i.e., an additional spatially dependent
potential. Therefore, one can expect that the HF term in the
BdG equations can change the superconducting solution in
the presence of quantum confinement. It is of importance to
clarify to what extent this will be through. In particular, this
concerns the thickness-dependent oscillations (i.e., quantum-
size oscillations) of the superconducting properties typical of
high-quality nanofilms and nanowires [1, 2, 9, 10].

In the present work, by numerically solving the BdG
equations for a superconducting clean nanocylinder, we
investigate how the HF term influences the superconducting
solution in the presence of quantum confinement.

The paper is organized as follows. In section 2 we
outline the formalism of the BdG equations for a nanocylinder.
In addition, Anderson’s approximate semi-analytical solution
to these equations is constructed here under the assumption
that the single-electron wavefunctions do not change in the
presence of the HF interaction. This makes it possible to check
the effect of the HF field on the relevant wavefunctions. In
section 3 we investigate and discuss numerical results of the
BdG equations with and without the HF term and compare
them with Anderson’s approximation.

2. Bogoliubov–de Gennes equations and Anderson’s
recipe

We focus on the basic superconducting properties of a metallic
clean cylindrical nanowire (with diameter D = 2R and
length L) in the quantum-size regime when the transverse
quantization of the single-electron spectrum is of importance.
In the presence of quantum confinement the translational
invariance is broken, and the order parameter appears to be
position dependent, i.e., �(r). It is well known that the BdG
equations are a common and useful approach to investigate
such a situation. Generally, these equations can be represented
as follows:

Eν |uν〉 = Ĥe|uν〉 + �̂|vν〉, (1)

Eν |vν〉 = �̂∗|uν〉 − Ĥ ∗
e |vν〉, (2)

where Eν stands for the quasiparticle energy, |uν〉 and |vν〉 are
the particle-like and hole-like ket vectors. In the clean limit the
single-electron Hamiltonian in equations (1) and (2) is of the
form (for zero magnetic field, A = 0)

Ĥe = Ĥ ∗
e = p̂2

2me
+ �HF(r̂) + Vconf(r̂) − EF, (3)

with r̂ and p̂ the position and momentum operators, EF the
Fermi level, me the electron band mass (set to the free electron
mass), Vconf(r) the confining interaction, and �HF(r) the HF
potential. In bulk the confining interaction can be neglected
and we arrive at the usual BCS picture based on plane waves.
Below we adopt the simplest choice of the confining interaction
potential: zero inside and infinite outside the wire. The gap-
operator �̂ in equations (1) and (2) is related to the order
parameter by �̂ = �(r̂).

As a mean-field theory, the BdG equations are solved in a
self-consistent manner with the self-consistency relations given
by

�(r) = g
∑

ν∈C
〈r|uν〉〈vν |r〉[1 − 2 fν ], (4)

�HF(r) = −g
∑

ν

[|〈r|uν〉|2 fν + |〈r|vν〉|2(1 − fν)], (5)

where g > 0 is the coupling constant, fν = 1/(eβEν + 1) is
the Fermi function (β = 1/(kBT ) with T the temperature and
kB the Boltzmann constant). In equation (4) C indicates the
set of quantum numbers corresponding to the single-electron
energy ξν (measured from the Fermi level) located in the Debye
window ξν∈C ∈ [−h̄ωD, h̄ωD] (ωD is the Debye frequency),
where ξν absorbs the HF potential, i.e.,

ξν = 〈uν |Ĥe|uν〉 + 〈vν |Ĥ ∗
e |vν〉. (6)

The cut-off in equation (4) is known [15] to be a payment
for using a simplified delta-function approximation for the
electron–electron interaction. Such a regularization is not
needed in equation (5). For our confining interaction (i.e., zero
inside and infinite outside) we have

〈r|uν〉|r∈S = 〈r|vν〉|r∈S = 0 (7)

at the sample surface, i.e., r ∈ S. Periodic boundary conditions
with unit cell L can be applied in the direction parallel to the
nanowire.

The Fermi level (i.e., the chemical potential) is determined
from

ne = 2

π R2 L

∑

ν

[〈uν |uν〉 fν + 〈vν |vν〉(1 − fν)], (8)

where ne is the mean electron density. We use the BdG
equations in the parabolic band approximation and, so, as
discussed in [9], an effective Fermi level should be introduced,
to recover the correct period of the quantum-size oscillations.
For aluminum (the aluminum parameters are used below)
EF = 0.9 eV for D ≈ 10 nm (see [10]). For D ∼ 1–2 nm, EF

shifts systematically from this value up, due to equation (8).
Due to the chosen confining geometry, it is convenient

to use cylindrical coordinates ρ, ϕ and z. In this case the
order parameter (the anomalous pairing potential) and HF
mean field (the normal potential) depend only on the transverse
coordinate, i.e., �(ρ) and �HF(ρ), and 〈r|uν〉 and 〈r|vν〉 are
represented in the form (ν = { j, m, k})

( 〈r|u jmk〉
〈r|v jmk〉

)
= eimϕ

√
2π

eikz

√
L

(
u jmk(ρ)

v jmk(ρ)

)
, (9)
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with j controlling the number of nodes in the transverse
direction, m the azimuthal quantum number, and k the
wavevector of the quasi-free electron motion along the
nanocylinder. Inserting equation (9) into equations (1) and (2),
we recast the BdG equations as

[E jmk − Lρ − �HF(ρ)] u jmk(ρ) = �(ρ)v jmk(ρ), (10)

[E jmk + Lρ + �HF(ρ)] v jmk(ρ) = �(ρ)u jmk(ρ), (11)

where �(ρ) is real, and

Lρ = − h̄2

2me

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

ρ2
− k2

)
− EF. (12)

The self-consistency relations can be rewritten as,

�(ρ) = g

2π L

∑

jmk∈C

u jmk(ρ)v jmk(ρ)[1 − 2 f jmk], (13)

�HF(ρ) = − g

2π L

∑

jmk

[u2
jmk(ρ) f jmk

+ v2
jmk(ρ)(1 − f jmk)], (14)

with u jmk(ρ) and v jmk(ρ) real. To numerically solve
equations (10) and (11), we expand the transverse particle-like
and hole-like wavefunctions as

(
u jmk(ρ)

v jmk(ρ)

)
=

∑

J

(
u jmk,J

v jmk,J

)
ϑJ m(ρ), (15)

with

ϑJ m(ρ) =
√

2

RJm+1(αJ m)
Jm

(
αJ m

ρ

R

)
, (16)

where Jm(x) is the Bessel function of the first kind of the m-
order, and αJ m is the J th zero of this function. This allows
one to convert equations (10) and (11) into a matrix form.
Then, a numerical solution can be obtained by diagonalizing
the corresponding matrix, and self-consistency is reached by
iterating equations (13) and (14). One should keep in mind
that [15] 〈uν |uν〉 + 〈vν |vν〉 = 1 and, so,

∫ R

0
dρ ρ[u2

jmk(ρ) + v2
jmk(ρ)] = 1. (17)

As seen, the vector (u jmk,J ; v jmk,J )
T (J = 0, 1, . . .) is

normalized.
In addition to the above procedure, below we use

the Anderson approximate solution, as well [16]. Within
this approximation, instead of the expansion given by
equation (15), it is assumed that

u jmk(ρ) = U jmk ϑ jm(ρ), v jmk(ρ) = V jmk ϑ jm(ρ).

(18)
Equations (18) means that we seek a minimum of the BdG
thermodynamic functional in the subspace of u jmk(ρ) and
v jmk(ρ) proportional to the eigenfunctions of Lρ . Notice
that it is possible to deal with Anderson’s recipe, invoking
the eigenfunctions of Lρ + �HF(ρ). However, below we are
interested in equations (18) because it helps to clarify how
a change in the single-electron wavefunctions due to the HF
potential, can contribute to the problem of interest. To be

accurate, the Anderson approximation should be based on
the true single-electron wavefunctions. We recently found
that in this case the error in Anderson’s solution for D �
2–3 nm is less than 1–2% [17]. Hence, comparing the
results of numerically solving equations (10) and (11) with
the data based on equations (18), we can reach unambiguous
conclusions about the role of the changes in the single-
electron wavefunctions due to the HF interaction. As follows
from equations (18) (see, for instance, [17]), Anderson’s
approximation results in the BCS-like self-consistent equation

� j ′m′ = −1

2

∑

jmk∈C

g j ′m′, jm� jm√
ξ 2

jmk + �2
jm

[1 − 2 f jmk], (19)

with

� jm =
∫ R

0
dρ ρ ϑ2

jm(ρ)�(ρ) (20)

and the interaction-matrix element given by

g j ′m′, jm = − g

2π L

∫ R

0
dρ ρϑ2

j ′m′(ρ) ϑ2
jm(ρ). (21)

For the single-electron energy appearing in equation (19) we
have

ξ jmk = h̄2

2me

[
α2

jm

R2
+ k2

]
+ � jm − EF, (22)

where

� jm =
∫ R

0
dρ ρ ϑ2

jm(ρ)�HF(ρ). (23)

Inserting equation (5) into equation (23), one obtains

� j ′m′ = 1

2

∑

jmk

g j ′m′, jm

⎡

⎣1 − ξ jmk(1 − 2 f jmk)√
ξ 2

jmk + �2
jm

⎤

⎦ . (24)

We should not forget about EF appearing in the single-electron
energy given by equation (22). It is fixed through equation (8)
that is now of the form

ne = 1

π R2 L

∑

jmk

⎡

⎣1 − ξ jmk(1 − 2 f jmk)√
ξ 2

jmk + �2
jm

⎤

⎦ . (25)

Thus, in the Anderson approximation introduced by equa-
tions (18), one needs to solve equations (19) and (24), keeping
equation (25). As already mentioned above, comparing a nu-
merical solution of equations (10) and (11) with the solution
based on Anderson’s recipe, we can check the effect of the HF
interaction on the single-electron wavefunctions.

3. Numerical results

In this section we investigate and discuss numerical self-
consistent solutions of equations (10) and (11) with the HF
potential (the full version) and without it (the truncated version,
by setting �HF(ρ) = 0 in the relevant expressions). Results
are also compared with a solution of equations (19) and (24).
All the calculations are performed with the parameters typical

3
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Figure 1. (a) The spatially averaged superconducting order parameter �̄/�bulk and (b) critical temperature Tc/Tc,bulk versus the nanowires
diameter D as calculated from the BdG equations (10) and (11) at zero temperature.

for aluminum [15, 14]: h̄ωD = 32.31 meV; gN(0) = 0.18,
with N(0) = mekF/(2π2h̄2) the bulk density of single-
electron states at the Fermi level (for EF see discussion
after equation (8)) and kF the bulk Fermi wavevector. For
these parameters the bulk BCS coherence length ξ0 =
1.6 μm is significantly larger than the nanocylinder diameter.
However, contrary to the ordinary Ginzburg–Landau picture,
the superconducting order parameter now exhibits significant
spatial variations in the transverse direction due to the broken
translational symmetry. The length of the nanocylinder is
taken as L = 1 μm 
 λF = 2π/kF. This is an optimal
choice, upholding, on one side, the use of periodic boundary
conditions in the z direction and, on the other side, it results in
a reasonable calculational time. As opposed to the truncated
BdG equations, their full version requires much more time
for convergence of the numerical procedure, and this time
increases proportionally with L2. Numerically solving the
Anderson equations (19) and (24) is less time-consuming and,
so, we take L = 5 μm in this case.

In figure 1(a) the spatially averaged order parameter

�̄ = 2

R2

∫ R

0
dρ ρ�(ρ),

calculated from equations (10) and (11), is plotted in units
of the bulk order parameter (�bulk = 0.25 meV) versus the
nanocylinder diameter with and without the HF mean field.
In figure 1(b) the corresponding critical temperature Tc (in
units of the bulk one) is given. As seen, both data-sets exhibit
pronounced size-dependent oscillations, typical of high-quality
superconducting nanofilms and nanowires with uniform
thickness [1, 2, 9, 10]. Such oscillations result from single-
electron subbands forming due to the transverse quantization
of the electron motion. With an increase in the nanowire
diameter, the subbands shift down in energy. Each time when
a new subband comes into the Debye window around the
Fermi level, the number of single-electron states contributing
to the superconducting order parameter increases, and a size-
dependent superconducting resonance develops. As follows
from figure 1, the quantum-size oscillations corresponding to
the full version of the BdG equations are somewhat shifted

up. The mean distance between neighboring superconducting
resonances is controlled by the bulk Fermi wavelength λF and,
so, the shift magnitude is roughly proportional to λF. For
typical metallic parameters this magnitude is about the unit-cell
dimensions. However, for low-carrier-density materials, e.g.,
superconducting semiconductors (see, for instance [18–21],
and recent papers on boron-doped diamond [22, 23] and boron-
doped silicon [24]), such a shift can approach the scale of
few nanometers. The difference between the two sets of data
in figure 1 is most significant for those diameters, where a
size-dependent superconducting resonance in the case without
the HF interaction is already present while in the full version
such a resonance only starts to develop. The difference is
not so significant but still survive when the resonance comes
into its decay stage. When the resonance is fully decayed
(the off-resonant regime), the HF corrections are practically
negligible, and we arrive at the situation similar to bulk. Notice
that small differences between the numerical results of the
full and truncated BdG equations in the off-resonant regime
(due to beating patterns of the corresponding curves), are
because of the chosen nanowire length. Indeed, as follows
from calculations for several selected off-resonant diameters,
such beating patterns disappear when L increases up to 20–
30 μm, and the results with and without the HF interaction
approach each other.

Notice that maxima of Tc/Tc,bulk in figure 1(b) are
generally higher than those of �̄/�̄bulk in figure 1(a). This
is due to formation of new Andreev-type states induced by the
transverse quantum confinement (see details in [25]), which
results in a decrease of �̄/(kBTc) below the bulk value 1.763
at the resonant points. As seen from figure 1, inclusion of the
HF interaction can slightly reduce the resonant enhancements,
with practically no effect on the ratio �̄/(kBTc).

In figure 2 we present different quantities calculated with
the full and truncated versions of equations (10) and (11) for
two diameters: the upper panel, for D = 2.24 nm; and the
lower panel, for D = 2.6 nm. The upper panel represents the
situation when a superconducting resonance is developed for
the truncated version but is not yet present for the full version
of the BdG equations. In figure 2(a) the superconducting
order parameter �(ρ) calculated with (HF) and without the HF

4
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Figure 2. Upper panel: (a) the superconducting order parameter �(ρ), (b) the local density ne(ρ) and (c) the distribution u2
jmk(ρ) + v2

jmk(ρ)
versus ρ/R for D = 2.24 nm. The lower panel: the same but for D = 2.6 nm. The results for the truncated (no HF) and full (HF) BdG
equations are plotted.

interaction (no HF, the inset), is plotted versus the transverse
coordinate ρ/R for T = 0. The spatial distribution of the
pair condensate is very different for these two cases: the data
without the HF interaction are larger by an order of magnitude,
and even the profile of �(ρ) is different. In figure 2(b) the local
electron density, i.e.,

ne(ρ) = 1

π L

∑

jmk

[u2
jmk(ρ) f jmk + v2

jmk(ρ)(1 − f jmk)], (26)

is shown for the same diameter. As can be expected, now the
difference between the two data-sets is not so significant (we
keep to the same value of the mean electron density ne). Due
to the attractive character of the effective electron–electron
interaction, the HF potential forces electrons to go closer to
the nanocylinder center. However, the confining interaction
has the major effect on ne(ρ) as compared to the HF potential
producing only some small corrections. From the results
for the local electron density, it is possible to expect that
the single-electron wavefunctions are also not very sensitive
to the HF interaction. For nanowires, |uν(r)| and |vν(r)|
is nearly proportional to the corresponding single-electron
wavefunction (see discussion above, after equations (18)).
Hence, due to equation (17), the quantity u2

jmk(ρ) + v2
jmk(ρ)

can provide us with the information about the single-electron
distribution. In figure 2(c) u2

jmk(ρ) + v2
jmk(ρ) is plotted versus

ρ/R for the quantum numbers most sensitive to including the
HF interaction. We can indeed see that the effect of the HF

potential on the wavefunctions is minor. Similar conclusions
can be obtained from the lower panel of figure 2. The
only exception is that the superconducting order parameter
in figure 2(d) (D = 2.6 nm) does not change so much
when including the HF potential. Notice that ne(ρ) given in
figure 2(e) is practically the same as in figure 2(b). However,
this is not true for u2

jmk(ρ) + v2
jmk(ρ) (compare panel (c) with

panel (f)). The point is that the integral
∫ R

0 dρ ρ ne(ρ) =
ne R2/2 changes with the radius but for the single-electron
distribution u2

jmk(ρ) + v2
jmk(ρ) we have equation (17).

From the results presented in figure 2, one expects
minor effects on the single-electron wavefunctions due to
the incorporation of the HF interaction. This expectation
can be put on a more solid ground by using the Anderson
approximation based on equations (19) and (23). We
remind that the Anderson approximation is quite good for
superconducting nanowires provided that it involves the true
single-electron wavefunctions. Equations (19) and (23) follow
from equations (18) and, hence, as assumed, the single-electron
wavefunctions are not altered by our position-dependent HF
interaction. If this is a reasonable assumption, results of the
Anderson approximation constructed in this way, should be
close to the results of the full BdG equations. As seen from
figure 3, this is indeed the case. We can conclude that the
thickness-dependent shift of the superconducting resonances
in the presence of the HF interaction has nothing to do with the
single-electron wavefunctions. Its mechanism is due to the fact

5
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Figure 3. �̄/�bulk versus the nanowire diameter (T = 0): triangles
correspond to the Anderson approximation (the HF field is included);
circles and squares are the numerical results of the full and truncated
BdG equations, respectively.

that the position-dependent HF potential results in a change of
the single-electron energies measured from the Fermi level.

So far we considered extremely narrow nanowires, for
the sake of simplicity. However, a similar shift (≈0.01–
0.02 nm) of the quantum-size oscillations due to the HF term
survives until the total decay of the quantum-size oscillations
(up to diameters of about 50–70 nm). In particular, such
a shift is clearly seen in figure 4, where numerical results
of the truncated BdG equations for D = 10–10.5 nm are
compared with a solution of equations (19) and (23) including
the HF potential. Thus, we arrive at the following picture.
In the vicinity of a superconducting resonance, the bottom of
some single-electron subband is situated close to the Fermi
level. Therefore, a repositioning of this subband with respect
to the Fermi level can result in a significant change of the
number of single-electron states in the Debye window and,
so, in a remarkable increase/decrease of superconducting
characteristics. However, when bottoms of all single-electron
subbands are quite apart from the Fermi level, i.e., in the off-
resonant regime, a move of these subbands in energy produces
much less important effect on the number of single-electron
states located in the Debye window. This is why the decay of
a superconducting resonance is accompanied by a depletion of
the influence of the HF potential.

4. Conclusions

Quantum confinement breaks the translational symmetry
in nanostructured superconductors. In this case, despite
the delta-function approximation for the electron–electron
interaction, the HF potential becomes position dependent, and
its contribution to the single-electron energy (measured from
the Fermi level) is a function of the relevant quantum numbers
(contrary to bulk!). By numerically solving the Bogoliubov–
de Gennes equations for a clean metallic nanocylinder, we
have shown that such a feature results in a shift of the curve
representing the thickness-dependent oscillations of the critical
temperature (the energy gap, the order parameter etc) to

Figure 4. HF versus no HF: �̄/�bulk as a function of the nanowire
diameter D at zero temperature (squares are the results of the
truncated BdG equations (no HF interaction); triangles are the results
of the Anderson approximation, see equations (19) and (23)).

larger diameters. For metallic parameters it is of about the
typical unit-cell dimensions. Notice that this is quite enough
to completely change the pattern of thickness-dependent
oscillations of Tc between the Pb nanofilms with even and odd
numbers of monolayers (see [1, 3, 4]). For low-carrier-density
materials, e.g., superconducting semiconductors, such a shift
increases significantly (proportionally to the relevant Fermi
wavelength) and can reach the scale of few nanometers or even
larger.
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